清华唐杰教授深度报告:人工智能的下个十年
之后,人工智能进入了一轮跨度将近十年的寒冬。 20 世纪 80 年代,人工智能进入了第二波浪潮,这其中代表性的工作是 1976 年兰德尔·戴维斯 (Randall Davis)构建和维护的大规模的知识库,1980 年德鲁·麦狄蒙(Drew McDermott)和乔恩·多伊尔(Jon Doyle)提出的非单调逻辑,以及后期出现的机器人系统。 在 1980 年,汉斯·贝利纳 (Hans Berliner)打造的计算机战胜双陆棋世界冠军成为标志性事件。随后,基于行为的机器人学在罗德尼·布鲁克斯 (Rodney Brooks)的推动下快速发展,成为人工智能一个重要的发展分支。这其中格瑞·特索罗(Gerry Tesauro)等人打造的自我学习双陆棋程序为后来的增强学习的发展奠定了基础。 20 世纪 90 年代,AI 出现了两个很重要的发展:第一项内容是蒂姆·伯纳斯·李(Tim Berners-Lee)在 1998 年提出的语义互联网路线图,即以语义为基础的知识网或知识表达。后来又出现了 OWL 语言和其他一些相关知识描述语言。第二项内容是杰弗里·辛顿(Geoffrey Hinton)等人提出的深度学习,这标志着第三次人工智能浪潮的兴起。 在这次浪潮中,我们也看到很多企业参与其中,如塞巴斯蒂安·特龙(Sebastian Thrun)在谷歌主导推出的自动驾驶汽车,IBM 的沃森(Watson)于 2011 年在《危险边缘》(Jeopardy)中获得冠军,苹果在 2011 年推出的自然语言问答工具 Siri 等。 以上就是人工智能在 60 多年的发展历史中取得的一些标志性成果和技术。 二、AI 近十年的发展我们再深入分析 AI 近十年的发展,会看到一个重要的标志:人工智能在感知方面取得重要成果。人工智能在语音识别、文本识别、视频识别等方面已经超越了人类,我们可以说 AI 在感知方面已经逐渐接近人类的水平。从未来的趋势来看,人工智能将会有一个从感知到认知逐步发展的基本趋势,如下图所示: 首先,我们来看看 AI 在感知方面做了哪些事情。在感知方面,AlphaGo、无人驾驶、文本和图片之间的跨媒体计算等取得了快速发展。从宏观来看,算法是这个感知时代最重要、最具代表性的内容。如果把最近十年的重要算法进行归类,以深度学习为例进行展示的话,我们可以得到下图所示的发展脉络。 图中最上面浅紫色部分的内容是以前向网络为代表的深度学习算法。第二层淡绿色部分的内容表示一个以自学习、自编码为代表的学习时代。第三层橘色部分的内容代表自循环神经网络(概率图模型的发展)的算法。最下面粉色部分是以增强学习为代表的发展脉络。 总体来讲,我们可以把深度学习算法归类为这四个脉络,而这四个方面都取得了快速的进展。 如果再深入追溯最近几年最重要的发展,会发现 BERT 是一个典型代表(想深入了解的读者可以阅读https://arxiv.org/pdf/1810.04805.pdf)。以 BERT 为代表的预训练算法得到了快速的发展,基本上所有的算法都采用了预训练+微调+ Fine tune 的方法,如下图所示: (编辑:186手机网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |